
 1

 2

LiveCode Lite: Computer Programming Made
Ridiculously Simple

Stephen Goldberg, M.D.

Professor Emeritus
University of Miami School of Medicine

MedMaster Inc., Miami FL

 3

Copyright © 2015 by MedMaster Inc.

All rights reserved. This book is protected by copyright. No part of it may be
reproduced, stored in a retrieval system, or transmitted in any form or by any
means, eletronic, mechanical, photocopying, recording or otherwise, without
written permission from the copyright owner.

ISBN 978-1-935660-21-7

Made in the United States of America

Published by
MedMaster, Inc.
P.O.Box 640028
Miami, FL 33164

 4

 5

CONTENTS

SECTION 1. LIVECODE BASICS
 Preface
 Chapter 1. Introduction
 Chapter 2. The Stack Metaphor
 Kinds of Stacks
 The Message Box
 Chapter 3. The Tools Palette
 Buttons
 Fields
 Menu Objects
 Scrollbars
 Image and Quicktime Controls
 Draw and Paint Tools
 Chapter 4. Groups
 Chapter 5. The Application Browser
 Chapter 6. The Message Flow Hierarchy

SECTION 2. SCRIPTING
 Chapter 7. Mouse-related Script Words
 Chapter 8. Navigation Commands
 Chapter 9. General Action Commands
 Chapter 10. Keyboard Script Words
 Chapter 11. Variables and Custom Properties
 Chapter 12. Me vs. The Target
 Chapter 13. Functions

Chapter 14. Math
 Chapter 15. Constants
 Chapter 16. If-Then-Else and Repeat Structures
 Chapter 17. Cursors
 Chapter 18. Printing
 Chapter 19. Internet Communication
 Chapter 20. Special Effects Scripting
 Chapter 21. Script Debugging

SECTION 3. PROPERTY INSPECTORS
 Chapter 22. Stack Property Inspector
 Stack Scripting
 Chapter 23. Card Property Inspectors
 Card Scripting
 Chapter 24. Button Property Inspector
 Chapter 25. Menu Property Inspectors
 Menu Scripting
 Chapter 26. Field Property Inspector
 Field Scripting

 6

 Chapter 27. Image Property Inspector
 Chapter 28. Player & AudioClips Property Inspectors
 Chapter 29. Absolute vs. Referenced File Paths
 Chapter 30. Graphics Property Inspectors
 Chapter 31. Scrollbar/Slider/Little Arrows/Progress Bar Property
 Inspectors
 Chapter 32. Multiple Objects Property Inspector
 Chapter 33. Groups Property Inspector

SECTION 4. THE MENU BARS
 Chapter 34. The LiveCode Menu Bars

REFERENCES

 7

SECTION 1. LIVECODE BASICS

CHAPTER 1. INTRODUCTION

What Is LiveCode?

LiveCode (formerly called Runtime Revolution) is an intuitive and powerful
programming environment with a short learning curve, in which programming is
done in simple English, with rapid results.

Whether in business, education, or game development, many people do not have
the resources to hire an IT person or the time to learn programming languages
with steep learning curves. LiveCode is an extremely versatile program, where in
very little time one can create advanced applications with text, interactive
buttons, images and vector graphics, movies, sounds, and Internet and database
connectivity. With a click of a button, your creations, whether developed on the
Macintosh or Windows versions of LiveCode, can be built for Macintosh,
Windows, Linux and mobile devices. Educators who are looking for a simple but
powerful way to create applications for their classes, or teach students to
program, will find LiveCode an excellent way to create even complex teaching
materials, or to teach the general principles of programming to their classes.

LiveCode, while easy to use, is a professional tool that gives developers a
competitive edge in the speed at which they can complete their projects in
comparison with program environments such as Java and C++.

LiveCode is an outgrowth of Apple’s HyperCard program of the late 1980s, but is
far more powerful. While the original HyperCard language contained about 150
programming words, LiveCode contains close to 2000 and many features far
more advanced than the original HyperCard. LiveCode has been described as
“HyperCard on steroids”.

With so many advanced features, and new ones every year, it can be difficult for
the beginner to get started with the program. While some people can learn
LiveCode from scattered tutorials, others need a brief, linear, step-by-step
approach, as emphasized in this book.

This is not a reference text or a book for the expert. It covers only the most basic
aspects of LiveCode to enable the beginner to see the forest for the trees. It does
not cover features that are seldom used or advanced areas, such as databases
and programming specific to mobile devices. What the book describes, though,
should be useful for almost any project idea. One of the best-selling games of all

 8

times was the point-and-click game Myst; it was created with HyperCard, which
was far less powerful than Livecode.

This book emphasizes programming features that I have found most useful in
over 25 years of programming educational materials at the University of Miami
School of Medicine and the Medmaster Publishing Company.

LiveCode is a much deeper program than can be covered in this brief book. Yet
you can accomplish much with these basics.

Throughout the book, scripting words will be placed in italics, while key words will
be in boldface. The pictures throughout this book are those taken with the
Macintosh interface. However, the features in Windows are very similar.

I thank Jacqueline Landman Gay, who reviewed an earlier version of the
manuscript, for many helpful suggestions.

Let’s get started!

CHAPTER 2. THE STACK METAPHOR

Fig. 2-1.

LiveCode uses the original HyperCard metaphor of a stack (deck) of cards (Fig.
2-1). A stack consists of one or more cards, on which you can place various
objects, such as buttons, fields, images, and movies. Although only one card in a
stack can be seen at a time (like a neatly piled deck of card), the user can

 9

navigate from one card to another, or communicate from a card to outside
sources, such as other stacks, or the Internet.

Open LiveCode by clicking on the LiveCode application icon. You don’t
immediately see any stacks, just a Menu Bar (Fig. 2-2), an Icon Tool Bar, and a
Tools Palette with icons of the kinds of things you can put on a card, such as
buttons, fields, images, and movies (Fig. 2-2). Actually, you may first see a
tutorial Get Started Center window, which automatically opens, unless you opt
to turn this feature off by unchecking the “Show this screen on Startup” box at the
lower left corner of the Start Center window. To reshow this Help window, select
HELP/START CENTER.

Fig. 2-2.

1. From the Menu Bar select File/New Mainstack. This creates a stack called a
“main stack” that contains a single card (Fig. 2-2). Under the Menu Bar, there is
also a quick-select Icons Tool Bar, with text names for the icons. If you don’t
see the Icons Bar or its text, select VIEW/Toolbar Text and VIEW/Toolbar
Icons from the Menu Bar.

2. Name this stack after selecting Object/Stack Inspector and typing
MyMainstack in the Stack Inspector’s Name field. Alternatively, you can open
the stack inspector by clicking on the Inspector icon in the Icon Toolbar. And still
another way is to right click on the stack and choose Stack Property Inspector.

3. Close the Inspector window. Note that the name of the stack now appears at
the top of the stack in the stack’s title bar.

 10

4. Save this stack (FILE/SAVE) to your desktop. LiveCode will by default use the
mainstack’s name and save the stack to your desktop as a stack file, called
MyMainstack.livecode, for future use in this book.

5. Position the stack where you wish on the desktop by holding the mouse down
over the stack’s title bar and dragging. Resize the stack as you want by holding
the mouse down and dragging the resize handle at the lower right hand corner of
the stack (Fig. 2-2).

A mainstack can have associated substacks (Fig. 2-1). It is like dividing a book
into chapters. You can have a long book without chapters, but it is often better to
organize books with individual chapters. Similarly, while you could create just one
stack with many cards (pages) in it, it is often better organized to create a
mainstack with connections to one or more substacks.

Let’s create a substack:

1. Select File/New Substack of MyMainstack.

2. Right click on this substack; select Stack Property Inspector.

3. Name this substack MySubstack and close the stack’s Inspector window.

4. Save your work (File/Save) and, on the desktop, change your desktop file
name from MyMainstack.livecode to MyTutorial.livecode (or MyTutorial.rev if
you are using an older version of LiveCode, which was called Runtime
Revolution. Note that although the desktop file now is titled MyTutorial.livecode,
the Mainstack is still titled MyMainstack and the substack is still called
MySubstack.

5. Quit LiveCode (LIVECODE/QUIT).

6. Now open MyTutorial.livecode (MyTutorial.rev) by double-clicking on its icon.
Uh, Oh! You only see one stack, MyMainstack. Where is MySubstack? Did it
disappear!? Actually, it is by default closed; only a mainstack opens when a
LiveCode file is opened. Confirm that stack MySubstack is really there, as
follows:

1. Select Tools/Application Browser (Fig. 2-3).

 11

Fig. 2.3. Application Browser

2. The Application Browser lists all the stacks and substacks in the stack file of
MyTutorial.livecode, in this case MyMainstack and MySubstack.

3. Double click on the word MySubstack in the Application Browser.
MySubstack opens (so it is really there!).

Since both MyMainstack and MySubstack both have a white background, let’s
distinguish their appearance:

1. Open MySubstack’s card Property Inspector by right clicking on the
MySubstack card (or just double-clicking on the card) and choose Card Property
Inspector. Name the card “Green card”.

2. Choose Colors & Patterns (Fig. 2-4) from the Card Inspector’s pulldown
menu at the top of the Property Inspector. The row labeled Background has two
boxes, the left one for patterns and the right one for colors. Click on the right-
hand box and select a green color. Click “OK”. MySubstack’s card is now
colored green, to distinguish it from the white MyMainstack.

 12

Fig. 2-4. Colors and Patterns

Note!: If you move the mouse cursor over almost any of the words or symbols in
a Property Inspector, a tiny note generally appears, called a tooltip. For
instance, just positioning the mouse over the color box that you just clicked in the
Property Inspector reveals the tooltip backgroundColor, which can be used in a
script. There will be more about scripting later, but as a quick example, if you
were to write as a script:

set the backgroundColor of this card to green

this would set the color of the card to green, without having to open the Inspector
to make this change. This is a powerful feature of LiveCode. You can not only set
the properties of objects in the stack through their Property Inspectors, but you
can, using the script word set, set any property of an object by script, whose
words can easily be looked up through the tooltip feature.

3. Close the MySubstack Card Property Inspector. Save your work.

Stack MySubstack has only one card. Let’s create 2 more:

 13

1. Click on stack MySubstack.

2. Select Object/New Card from the menubar. Do this once more to create a
total of 3 cards in the stack.

3. Save your work.

4. There are now 3 cards in stack MySubstack (one green and 2 white). But
where are these new cards? Only one card in a stack is visible at a time, since
cards lie directly under one another. The number of each card appears in
parentheses at the top of the card in the card’s titlebar. There should be number
“(1)”, “(2)”, or “(3)” in the titlebar of MySubstack, indicating which of the three
cards you are looking at. To move from one card to the next, select View/Go
Next or View/Go Prev from the Menu Bar or pressing their keyboard equivalents
shown on the Menu Bar. Note how the number of the card changes as
MySubstack cycles through its 3 cards.

5. To even more clearly distinguish the three cards in stack MySubstack, name
the second card “Red card” and color it red. Name the third card “Yellow card”
and color it yellow. Be sure you make these color changes in each individual
card via their card Property Inspectors, rather than to the stack Property
Inspector, which would set the color to the stack as a whole. (Sometimes the
stack Property Inspector just pops up on its own, which can be a nuisance, so be
sure you are working with the Card Property Inspector). If you were to set the
stack’s color some color other than green, red, or yellow, note that setting the
color of each individual card overrides any color assigned to the stack. Other
card properties also override those of the stack.

6. Save your work.

7. Open the Application Browser (Tools/Application Browser).

8. Click on the little arrow to the left of MySubstack (Fig. 2-5). You should see
listed under “MySubstack” the names of the cards you have created, “Green
card”, “Red card”, “ and “Yellow card”, Right click on any of these names to
reveal a menu for each card. Select “go” . This opens the corresponding card.

 14

Fig. 2.5. Application Browser

9. Quit Livecode.

Kinds Of Stacks

There are 4 general types of stacks: topLevel, modal, modeless and palette,
which correspond to the way a user can interact with them.

Fig. 2.6.

TopLevel stacks are the standard default type (Fig. 2-6A). This is the only fully
editable stack.

Modal stacks (Fig. 2-6B) require a response from the user before any other
stack can be used. They frequently are in the form of a dialog box (appearing in

 15

response to answer or ask commands, to be discussed later under Scripting),
requiring the user to input some information before the user can return to the
underlying stack.

Modeless stacks (Fig. 2-6C) are like the standard topLevel ones, except the
user is limited to typing in text in fields and clicking on buttons.

Palette stacks (Fig. 2-6D) commonly contain tools, may have your own personal
icons that can be accessed for use in stack you are working on. An example of a
palette stack is the Tools palette that comes with LiveCode.

Usually, you will only be creating TopLevel or modal stacks.

The Message Box

The Message Box (Fig. 2-8) is very useful in testing scripting commands. For
example:

Fig. 2.7. Message Box

1. Open LiveCode and create a new mainstack (FILE/NEW MAINSTACK). Open
the Message Box with Tools/ Message Box, or use the keyboard shortcut
Command-M (for Macintosh) or Control-M (for Windows). (In general, keyboard
combinations that use the “Command” key in Macintosh use the “Control” key in
Windows.)

2. Note that each of the objects on the Tools Palette has a tooltip name that can
be seen simply by placing the mouse cursor directly over the icon.

The top of the Tools Palette (Fig. 2-2) contains an arrow on the left, called the
Run (browse) tool and a hatched arrow on the right, the Edit tool (pointer)
tool. When you click on the Edit tool, you are in Edit mode, able to edit your
stack. When you click on the Run tool, you are instantly taken to Run mode,
where you can test how the stack runs. This easy ability to move between editing
and running the program is one of the reasons that allow rapid development time
in LiveCode.

 16

Double click on the Text Entry Field in the Tools Palette to place a Text Entry
Field at the center of the card (Fig. 2-8). Select the field by clicking on it in Edit
mode with the mouse, and enlarge the field somewhat by pulling on its handles.

Fig. 2-8.

3. Type in the Message Box:

put “Goodbye cruel world.” into field 1

Then press Return. The words “Goodbye cruel world.” will appear in the field.
Thus, the Message Box is a quick way to deliver and test messages.

There are a number of icons along the top of the Message Box (Fig. 2-7). Two
are particularly helpful. The one at the very left is for single-line commands. It
enables you test a single line of script. After typing a message, you press Return
to effect the command.

The icon second from the left enables you to test multiple-line commands. In
multiple-line commands, your commands go into effect when you press the Enter
key (not the Return key, which is needed to do carriage returns for multiple lines).
Click on the Multiple-line icon of the Message box and type the following:

put “This message is from the multiple-line Message Box.” into field 1
beep

Then press the Enter key. The words will appear in the field, followed by a beep -
- multiple commands.

You can also issue multiple commands in the single-line Message Box by
inserting a “;” between the commands. Thus:

put “This message is from the single-line Message Box” into field 1;beep

 17

If you can’t remember what previous commands you wrote in the single-line
Message Box, LiveCode automatically remembers them. Simply press the up key
arrow, which will scroll you through previous commands and enable you to use
them again. Be careful not to use objectionable language in your command, as
someone using your stack will be able to find them using the up arrow!

Quit LiveCode. There is no need to save your work (unless you want to pin it up
on the refrigerator).

CHAPTER 3.

 THE TOOLS PALETTE

Open the stack file MyTutorial.livecode (MyTutorial.rev). You should see a white
(Mainstack) card and the Tools Palette.

The Tools Palette (Fig. 2-2) contains icons of the various controls (also called
objects) that can be placed on a card. (Actually, the term “objects” is a little
broader than “controls”, as “objects” includes cards and stacks as well as
controls. But we will not fuss over the difference.) If the tools palette is not visible,
select Tools/Tools Palette.

By holding the mouse over any of the Tools Palette icons, the name of the tool
appears. As you can see, the tools include a variety of buttons, fields, menu
objects, scrollbars, an image area control, Quicktime player, and a set of drawing
and paint tools (Fig. 2-2).

As mentioned, the top of the Tools Palette contains an arrow on the left, called
the Run (browse) tool and a hatched arrow on the right, the Edit tool (pointer)
tool. When you click on the Edit tool, you are in Edit mode, able to edit your
stack. When you click on the Run tool, you are instantly taken to Run mode,
where you can test how the stack runs.

At the bottom of the Tools Palette (you may have to click on the small arrow on
the right to open it) are the drawing and paint tools, including those for creating
vector drawings (at the top) and those for creating paint (bitmap) images at
the bottom. Vector drawings are geometric, based on mathematical formulae.
They are employed by drawing programs like Adobe Illustrator and take up much
less memory than paint images. Vector drawings are relatively simple.

Paint (bitmap) images, used by programs like Adobe Photoshop, are generally
used for relatively detailed images, such as photographs, with more colors than
in a vector illustration.

 18

The best ways to move a control (object) from the Tools Palette to a card:

• Double click on the control’s icon (in Edit mode). This places the control at the
center of the card.

• or hold the mouse down over the icon and drag the icon to wherever you want
on the card.

Every object in LiveCode, including the stacks and cards, has a Property
Inspector and a Script Editor. In the Property Inspector window you can
configure the properties of the object, such as its visibility, color, size and
position, text, and many other features. In the Script Editor you can write a
script that performs an action when you interact with the object, commonly by
left-mouse-clicking on it. Any object, including stacks, cards, buttons, fields,
scrollbars, movies, bitmap paint images, and vector drawings, can have its own
script.

The script editor of any object can be opened in a number of ways. Either:

• Right click (Control-click for single button mouse) on the object and select Edit
Script (or Edit Card Script or Edit Stack Script, if those are your interest). Try
this with the card you see. Personally, I find right-clicking the easiest way to open
a script.

• or choose Edit Script from within the Property Inspector by clicking on the little
arrow at the top of the Property Inspector window (Fig. 3-1). This reveals a
pulldown menu with the option of Edit Script, among other things.

 19

Fig. 3.1. Card Property Inspector

• or choose Object/ Object Script (or Card Script or Stack Script) from
LiveCode’s Menu Bar (Fig. 2-2).

• or click on the Code(Script) icon in the icon menubar (Fig. 2-2).

• or press Command-E (Macintosh) or Control-E (Windows) to open a control.
(The “E” is for “Edit”.)

• or click on the object while holding down the option and command keys
(Mac)(control/alt on Windows).

You don’t have to do all of these. Just use the most comfortable method for you.

Here we will write a script to navigate from the mainstack to the substack:

1. With MyMainstack in view, double-click on the Tools Palette’s Rectangular
Button icon to place a rectangular button in the center of stack MyMainstack.

2. Right click on the Button and select its Property Inspector.

 20

3. Name the button GoMySubstack. (Make sure you are working with the button
property inspector, not the stack property inspector.)

4. In the Label field of the Property Inspector, type Go To My Substack. The
difference between a button’s Name and its Label is that Name is the hidden
term that is used in the button’s script, while the Label is what the user sees on
the button. If you don’t fill out the Label field, the button will use the Name as the
label by default.

5. Close the Property Inspector and resize the button so that all of its label is
seen.

6. Right click on the button and select Edit Script from its menu. This opens the
script editor for the button. A button’s script editor by default contains lines that
read on mouseUp and end mouseUp. On mouseup signifies the beginning of a
“handler”, something that “handles” in this case the message mouseUp (which is
sent when a user clicks on the button), while end mouseUp indicates the end of
the handler. Our script will consist of these two lines and the script lines we will
add between them. Note: a script may consist of many handlers, e.g. on
mouseUp; on mouseDown.

7. Type go to stack “MySubstack” between the two lines. This tells the program
to open and go to stack MySubstack. Thus, the button script reads:

on mouseUp
 go to stack “MySubstack”
end mouseUp

8. Exit the Script Editor by clicking on the Script Editor’s close box. Click “Yes”
when prompted if you want to keep the change in the script.

Let’s test the script:

1. Select the Run Tool in the Tools Palette.

2. Click on button “Go To MySubstack”. The program will open card 1 (green) of
stack MySubstack.

Now we will create a button to return to stack MyMainstack:

1. With the Edit Tool selected, click on the first card (green) of MySubStack to
make it the topmost and active stack. Double click on the Rectangle button in the
Tools Palette to place the Rectangle button in the center of the green card.

2. Name the button GoToMyMainstack, with the label “Go To My Main Stack”.
Close the Property Inspector.

 21

3. Enlarge the button to see the entire label.

4. Edit the button’s script to read:

on mouseUp
 go to stack “MyMainstack”
end mouseUp

5. After applying the script and closing the Script Editor, select the Run Tool in
the Tools Palette and click on button “Go To My Main stack”. This will navigate to
stack MyMainstack.

6. Save your work for future reference. Quit LiveCode.

I you already knew these things, please accept my apologies for walking you
through all these steps.

Buttons

Open LiveCode and create a new mainstack. Examine the Tools Palette by
placing the cursor over each button type (Fig. 2-2). The tooltip will indicate each
button’s type.

Push button: A rounded button in Macintosh, square on Windows.

Default button: A button that will act without using a mouse, simply by pressing
the keyboard Return Key.

Rectangle button: Shaped like a rectangle in both Macintosh and Windows.

Check box button: Can be checked or unchecked. If there are multiple check
buttons on a card, one can check off any number of them in combination.

Radio button: Unlike the check button, the idea behind radio buttons is that only
one button at a time can be highlighted (its circle filled in). If you hilite one button,
the others in the group become unhilited. These will be discussed further in
Chapter 4 on Groups.

Fields

Label Field: A single-line field designed for placing labels on the screen.

Text Entry Field: A simple text field with no scroll bars. It can have multiple lines.

 22

Scrolling Field: Like the simple Text Entry Field, you can type text in this field, in
fact many lines, since a scrolling field has a scroll bar.

Scrolling List Field: This field does not allow the user to type in text. Rather, the
programmer preplaces text in the field via the field’s Property Inspector
(discussed later). When the user clicks on a given line of text, an action is
performed, as determined by the field’s script. List fields can be made with or
without a scrollbar.

Basic Table Field: For inserting items in a table format.

Data Grid: This field object can be used for presenting data in complex ways and
will not be discussed in this book.

Menu Objects (Fig. 3-2)

Fig. 3-2. Menu Objects.

While you might think menus would be classified as fields because of their text,
they are in fact modified buttons, and in scripts they are referred to as buttons.
With the Run Tool active, try out the various menu objects to see what they do.

A. Option Menu: Once the button is set up, the user of the program can select
an option from your list. When an option is chosen, the name of the selected
option remains visible when the user releases the mouse.

 23

B. Pulldown Menu: The user selects an option from a list that is centered right
under the button. Unlike the option menu, the name of the selected option is not
visible when the user releases the mouse. This menu is particularly useful for
creating your own menu clusters (like File, Edit, View, etc.).

C. Combo Box: Behaves like the Option menu, but the user can also type words
into the menu title.

D. Pop-Up Menu: Like the pulldown menu, the pop-up menu has a visible name
that never changes, regardless of which choice the user makes. Unlike all the
other menu types, the pop-up menu has a transparent background, so if it is not
given a name, it could sit unnoticed on the card until clicked on, or it could be
given an icon rather than a name.

E. Tab Panel: This menu is designed as a series of Tabs. Clicking on any of the
Tabs can elicit a different action.

Scrollbars (fig. 3-3)

Fig. 3-3. Scrollbars

While you might not think all the following are really scrollbars, that is what the
title bars of their Property Inspectors say, and it is how they are referred to in
scripts (Chapter 25).

Progress Bar: Can be programmed to display the progress of an event.

Slider: Can manually change the parameters of an event (e.g., sound level).

Little Arrows: Can be used to create a customized vertical scrollbar, often used
to increase or decrease a numerical count in a field.

Scrollbar: Can be used to create a customized horizontal or vertical scrollbar.

IMAGE AND QUICKTIME CONTROLS (Fig. 3-4)

 24

Fig. 3-4.

Image Area: Used to import images, particularly in JPEG, PNG, GIF, or BMP
format. PNG images can be imported with alpha channels. This means that
transparent areas will show up as transparent in LiveCode. JPEG is a
compressed format that saves space and is useful particularly for photographs.
GIF images do not support as many colors as do JPEGs, but take up less
memory and are excellent for cartoon images. GIFs can also be imported as GIF
animations and can have transparent areas.

Quicktime Player: Can import Quicktime movies as well as sounds in the
common AIF and WAV formats, and image files (including GIF animations). It
can even import PDF files.

Draw and Paint Tools (Fig. 2-2)

Vector draw tools: Draw vectors (graphics), which are geometric primitives,
such as points, lines, curves and shapes, are based on mathematical equations
to represent images, as in a drawing program like Adobe Illustrator. Experiment
with the various tools, including the gradient feature in the object’s Inspector.
While vector drawings are generally less complex than bitmap images, they can
be increased in size without becoming pixelated.

Bitmap paint tools: Can paint bitmaps (images drawn as pixels), as in a paint
program like Adobe Photoshop. You can use these tools to modify an image that
has been imported into LiveCode. You can also use them to create an image

 25

from scratch, in which case using one of the paint tools automatically creates an
Image Area control that fills the card. You draw within the Image Area, similar to
drawing on a canvas. Bitmap images can be more complex than vector images
and are good for photos. Unlike vector images, though, they can become
pixelated on attempting to enlarge the original image; you have to plan the size
and resolution of the original image in advance of placing it. Experiment with the
various tools. There are other controls not shown in the Tools Palette that can be
selected through the OBJECT/ NEW CONTROL menu.

Quit LiveCode, no need to save (Yay!).

CHAPTER 4. GROUPS

One or more controls on a card can be combined into a group, as follows:

CREATING A RADIO BUTTON GROUP:

1. Create a new mainstack.

2. Place two radio buttons on the card, one aside the other.

3. In Edit Mode, select both of them at once. Objects can be selected as a group
by clicking on them in sequence with the Shift key down, or simply by drawing a
marquee around them. Each radio button should have its own individual
handlebars (Fig. 4-1).

Fig. 4-1. Grouping.

4. Click on “Group” in the Icon toolbar (or choose OBJECT/GROUP
SELECTED). The radio buttons are now grouped together as shown by a single
box around the two buttons, rather than separate boxes around each (Fig. 4-1).

 26

5. In Run Mode, click each button. Note that, when grouped, when one radio
button is hilited, the other becomes unhilited, which is the expected behavior of
radio buttons. LiveCode does this automatically when you combine radio buttons
into a group.

CREATING A NAVIGATION BUTTON GROUP:

1. In Edit mode, remove the radio buttons from the card.

2. Place two rectangle buttons on the card. Position them at the bottom of the
card as in Fig. 4-2.

Fig. 4-2.

3. Open the Property Inspector of the Left button.

4. Name the Left button Left in the button’s Property Inspector’s Name field (Fig.
4-3). Uncheck the showName box in the Basic Properties part of the Left
button’s Property Inspector (Fig. 4-3) so that no name appears on the Left
button.

 27

Fig. 4-3. Fig. 4-4. Icons and Border.

5. Select ICONS & BORDER from the button Inspector’s pulldown menu. (Fig. 4-
4)

6. Click on the ICON magic wand (on the right) to open the list of icons that can
be used.

7. Select a left-pointing arrow symbol (Fig. 4-5). The “Left” arrow icon will then be
visible on the Left button.

 28

Fig. 4-5. Standard Icons.

8. Open the left button’s script editor by clicking on the little arrow at the top right
of the button Inspector (Fig. 4-3) and selecting Edit Script from the pulldown
menu that appears. This will bring you into the button’s script editor (Fig. 4-6).
The script editor already contains the words on mouseUp and end mouseUp to
indicate the usual conditions for the script to be enacted (when the mouse is Up)
and ended (end mouseUp).

Fig. 4-6.

9. Edit the script to read:

 29

on mouseUp
 go previous
end mouseUp

and apply the script.

10. Name the other button Right, uncheck its showName box, and select a right-
pointing arrow symbol. Have the script of the Right button read:

on mouseUp
 go next
end mouseUp

Save your work as “Navigation LiveCode”.

Now we will transform the buttons into a group:

1. First be sure that Select Grouped is unhilited (non-bold text) in the Icon Tool
Bar, showing the Select Grouped icon with widely separated corner dots. The
reason will be explained shortly.

2. Drag the cursor to draw a marquis around the two buttons and select Group
from the Icon. You could also use Command-G (Mac) or Control-G (Windows) to
do the grouping. You have just created a group Toolbar (Fig. 4-7). Note that
button handlebars, rather than surrounding each button individually, now
surround the two button as one group. The buttons can now be moved and
positioned as if they were a single object.

Fig. 4-7.

 30

3. Open the group’s Property Inspector by clicking on the group’s Inspector icon
in the Icon Toolbar, and name the group Navigation. (Groups have their own
Property Inspectors and Script Editor.)

4. Place a text entry field in the center of the card, simply to identify the card.

5. Create a new card (Object/New Card). Note that this card will be blank.

6. While on this second card, select from the Menu Bar Object/Place
Group/Navigation. This will place the group on the second card, too.

In Run Mode, note that clicking on either the left or right arrows will move you
from one card to the other, moving either back or forward.

No matter where you place the group on one card, it will appear in the same
place on the other card.

Say you want to make many cards now, all with the same Navigation group. You
don’t have to go through the tedium of creating blank cards and then placing the
Navigation group on each. This can be done automatically, as follows:

1. Open the Navigation group’s Property Inspector. Be sure that the box labeled
Behave Like a BackGround (Fig. 4-8) is checked. Now create a new card
(Object/New Card). The new card will automatically contain the Navigation
group.

 31

Fig. 4-8. Behave Like a Background.

Now you have the navigation buttons on all three cards. A most valuable feature
of putting a group on different cards is that a change to the group on one card
immediately appears on all the cards. For instance, try moving around the
Navigation group on one card. The position change will appear on the other 2
cards as well, keeping the buttons consistently positioned.

You can also group a single object with itself. It that case, its bounding box
appears somewhat larger than in the ungrouped state. Such grouping can be
useful if you want the object to appear on a number of cards, always in the same
position.

A group is an object in itself, with its own Group Property Inspector and Group
Script Editor. Moving a group moves all the controls within it. Deleting a group on
one card deletes the group on all the cards in which the group appears.

But what if you want to remove the group from one of the cards but not from the
other cards? To do this, select the group on the card in which you want to
remove the group. Select from the Menu Bar Object/Remove Group. The group
will selectively disappear on that card. If you had instead pressed the Delete

 32

button, LiveCode will warn you “The group is placed on multiple cards, really
delete it?” to let you know that pressing the Delete button would remove the
group from all cards on which it appears.

The Select Grouped Feature:

The icon in the Icon Toolbar titled Select Grouped can be a source of confusion,
but shouldn’t be. Let’s examine what this does:

When a group, in Edit mode, is selected, showing its bounding box around the
group as a whole, checking Edit/ Select Grouped Controls changes the group’s
appearance, so that now each of the controls within the group has its own
individual selection box when you click on any of the controls (so you can then
“Select” each control within the group individually in Edit mode). (The 4 dots
around the Select Grouped icon also move inward, confirming that each control
within the book will have its own selection box.)

This does not mean that the group has been ungrouped. The group is still there.
It is simply a way in which the programmer can conveniently make individual
changes to the properties of any individual control within the group. You can, for
instance, alter the size or position of one of the group’s controls, or modify any of
the control’s other properties or its script. Those changes will take place on all
the cards that contain the group. Some programmers may choose to always
leave the group in Select Grouped mode (compressed dots) for the convenience
of quickly modifying components of the group when desired.

If you try to delete one of the controls in Select Grouped mode, that same
control will be deleted on any of the cards that contain the group. But you cannot
add a new control (e.g. another button or field) to the group when Select
Grouped is hilited (compressed dots). In order to do that, Select Grouped
needs to first be unhilited (dots far apart). Let’s do that:

1. Go to the first card (the one with the field on it).

2. Click on and unhilite the Select Group icon in the icon Toolbar (so that the
dots on the icon’s corners are far apart).

3. In Edit mode, click on the Navigation button. The button’s dot handles should
then surround the group as a whole.

4. Select the Edit Group icon in the icon Toolbar. Note that the field you had
placed on the card becomes invisible, enabling you to focus solely on editing the
Navigation group! In this mode you could remove a control, add a control, modify
the size or position of a control, etc. When you are finished editing a group, click
again on the Edit Group icon; this returns the card to the normal state where you

 33

can see the rest of the contents on the card, the field in this case. The changes
you have made will occur in all the cards in the stack that contain the group.

If you really wanted to ungroup a group, click on the Ungroup icon in the Icon
Toolbar.

To review:

When Edit Group is chosen, all the objects on the cards, other than the group
that is to be edited, are hidden, enabling the programmer to focus attention solely
on the group to be edited. In this mode, you can add other controls to the group,
as well as make any other changes to the group. So Edit group provides more
flexibility than does Select Grouped in editing the group.

So why not just use Edit group to do all the editing, since it is the most versatile?
The only problem with Edit group is that when you use it on a group, all the
other objects on the card (the field in this case) are hidden, so you cannot see
them for reference as you modify the positions of controls within the group itself.
So use Select Grouped (the dot handles surround each control in the group
without removing from view other controls on the card) for all the modifications
you want to make to individual controls in a group, except if you want to add or
delete a new control in the group, in which case you would need to use Edit
Group.

When you finish editing a group using Edit Group, either click again on the Edit
Group icon in the Icon Toolbar, or choose Object/ Stop Editing Group from the
top LiveCode menu bar. Then, you have stopped editing, and all the controls on
the card will be visible again.

A group can contain a scrollbar, so that buttons, fields, or images in the group will
scroll with the group as whole!

Quit LiveCode. There is no need to save your work (but you can if you really
want to).

CHAPTER 5. THE APPLICATION BROWSER

Open MyTutorial.livecode and open its Application Browser (Fig. 2-5) by
selecting Tools/ Application Browser from the LiveCode menu bar. This
important tool lists all your stacks (main and sub), their cards and other objects
on the cards. It also lists any audioClips and videoClips that you have directly
imported. Since audioClips and videoClips remain unseen unless they are
referred to in the scripting, the application Browser lets you know they are there
and reminds you of their name so they can be referred to in a script. You can

 34

also check how an audioclip sounds, or a movie looks, by double-clicking on its
name in the Application Browser.

If you do not directly import an audioClip or videoClip and incorporate it as part of
the stack, but have simply referred to it externally via a Quicktime Player object
on the card, the referenced sound or movie will be referenced within the Player
object, and not listed in the audioClips or videoClips sections.

Right clicking (or Control-clicking with a one-button mouse) on any card listed in
the Application Browser brings up a menu that allows you to quickly go to that
card or bring up the card’s Property Inspector or Script, which you can change.
You can, for instance, change the order of the card within the stack by changing
the card’s number within its Property Inspector.

Right-clicking on any of the column headings of the Application Browser brings
up other options for column heads. Just passing the cursor over a column head
reveals the column’s purpose.

On the right side screen of the Application Browser (you may have to expand the
Application Browser window to see this), controls on each card are listed (the
Green Card, for instance, should have one, a button). The sole card of stack
MyMainstack has a GoMySubstack button that can be seen in the right side
screen of the Application Browser.

At any given time, there are many other stacks that are working in the
background by default as part of the LiveCode system environment. You can see
these in the Application Browser by selecting VIEW/ LIVECODE UI ELEMENTS
IN LISTS. Yes, the whole development environment of LiveCode itself is written
in Livecode! However unless you plan on rewriting parts of this interface (not for
the faint of heart) it is better to leave this option unselected.

Quit LiveCode. No need to save.

CHAPTER 6. THE MESSAGE FLOW HIERARCHY

When the mouse cursor acts on a button, it sends a variety of messages to the
button, including:

mouseDown – When the mouse button is pressed down
mouseUp – When the mouse is released while still over the button
mouseEnter – When the mouse enters the boundaries of the button
mouseLeave – When the mouse has left the button
mouseRelease – When the mouse is released while the cursor is outside the
button
mouseMove – When the mouse is moving within the button’s boundaries after
entering the button

 35

mousestilldown – Actions that occur continuously while the mouse is down

To respond to one of these messages you would typically place a message
handler in the button’s script. For instance:

on mouseDown -- means “When the mouse is Down, do the following:”
 beep-- issue a beep sound
end mouseDown -- indicates that the mouseDown directions are over

on mouseUp
 go to the next card
end mouseUp

The above mouseDown and mouseUp instructions can both reside in the
button’s script at the same time. Together, they are called the button’s script.
Individually, the mouseDown and mouseUp instructions are called handlers. So
in this example there is one script with two handlers. If a script has more than
one handler with the same name, only the first handler is executed.

If the button (or other control) does not contain any handlers for the sent
message, the message, e.g. mouseUp, passes right through the control,
searching for other underlying objects that may have a mouseUp handler. The
message searches along a fixed route, going first from the control to any non-
background group the button may be in (if there is one), then to the card, and
then to any groups that are acting as a background (in order of number), then to
the stack (substack if the control is on one, then to the Mainstack), finally to the
LiveCode engine, until the message comes to a handler in one of those places,
which traps and carries out the particular mouse message (Fig. 6-1). For
instance, if the card contains a mouseUp script with the command beep, and the
button on the card contains no mouseUp handler, clicking on the button will send
the mouseUp message to the button, but since there was no mouseUp handler to
trap it, will send it on to the card, where it will be trapped by the card’s mouseUp
handler and generate a beep.

 36

Fig. 6-1. LiveCode Message Hierarchy.

Note in Fig. 6-1 the 4 areas with dark backgrounds. These generally will be the
only points in the message flow that you will need to be concerned about in most
cases: the control, card, substack, and mainstack, in that sequence. There
are, however, other places where you may place handlers:

• A frontscript is a special script you might write if you want it to be the first area
to receive a command, even when the mouse clicks on an object.

 37

• A non-background group is the next waystation after the controls is clicked. If a
group’s Behave Like a Background property is checked, the group (now called
a background) is also situated just beyond the card in the chain.

• Library stacks are supplementary stacks, whose scripts you may wish to use
with the start using command.

• A backscript is a script that you want to be almost last in the message chain,
just before reaching the LiveCode Engine.

As an example, if a control (and non-background group, if present) have no
mouseUp handler, but the card has a mouseUp handler directing to go to the
next card, clicking on either the control or the card will result in going to the next
card.

Or, if the stack script, rather than the card script, has the mouseUp handler, and
there are no other mouseUp handlers along the route, then clicking on the button
will activate the stack’s mouseUp handler.

If the button simply has the handler:

on mouseUp

end mouseUp

with no instructions as to what to do when the mouse is up, this is still considered
a trapping handler (provided you do something minimal in the handler, like typing
a space, or clicking Apply in the Script box).

There are several ways you can apply a script when leaving the Script Editor:

• Click on the Script Editor’s close button to close the Script Editor. You will be
prompted to answer whether or not you want to save the script.

• Or, select Apply from the Script Editor’s File menu or click on the script editor’s
Apply button (which saves the script), and then close the Script Editor.

• Or, just press the Enter key twice. The first time you press Enter, LiveCode
applies (saves) the script, but does not close the Script Editor window (you might
want to leave the Editor window open when confirming that the script works). The
second time you press Enter, the Script Editor window closes.

Where should one put handlers -- in the script of the control, in the script of the
card, or in the script of the stack? To illustrate, consider the following two
handlers:

 38

on mouseUp
 calculateEverything -- (a made-up word)
end mouseUp

on calculateEverything
 <do this long and detailed calculation>
end calculateEverything

You could have both of these handlers in a single button script. Then when the
mouse is up, the script will carry out the long and complicated calculation.

However, what if you want to use this script on every card in the stack (e.g., a
stack of invoices, in which the long and complicated calculation needs to be
carried out on every card. Then it would make more sense to leave the mouseUp
handler in the button, but place the on calculateEverything handler in the stack
script. In that way, you don’t have to keep duplicating the on calculateEverything
script on every button or card. Moreover, if you decide to make some changes to
the “long and detailed calculation,” you don’t have to tediously change it in each
card’s button or card. You just need to change the script once, in the stack script.

Thus, it requires a little judgment as to whether to place scripts in objects, cards,
or stack.

Putting a script in a card makes it available to all objects on the card.
Putting a script in a stack makes it available to all cards in the stack and
their objects. Putting a script in a mainstack makes it available to all the
substacks as well.

Scripts Inside Groups – Caution!:

 Be cautious in assigning scripts to background groups, particularly those with a
mouseUp handler. It can lead to confusing results! A background group, however
small visually, occupies the entire space behind the card (Fig. 7-1). Thus, by
clicking on an empty area of the card, one may inadvertently trigger a
background group script. An alternative is to not use a background group, but
rather to just use OBJECT/PLACE GROUP to place groups. When you make a
new card, the group will not automatically be placed on the new card, as a
background group would, but the placed group will still have the same
functionality.

SECTION 2. SCRIPTING

The original HyperCard language had only about 150 scripting words. LiveCode
has close to 2000 and continues to expand. Rather than attempting to learn all of

 39

these words at once (many are rarely used) the relatively few key scripting words
presented here (about 150) should suffice for the vast majority of your needs.

However, you often may want to consult the excellent LiveCode dictionary not
only for words not covered in this book, but for more detailed information about
the words described below and related words.

LiveCode Dictionary

To access the scripting dictionary, select Dictionary from the top LiveCode tools
bar. To access all the LiveCode words, be sure the “All” option is selected at the
top of the leftmost column.

You have already been exposed to some scripting words. The good news is that
you don’t have to remember all of the many useful words. They are remembered
for you, being so easily accessible through the tooltip positioned over the various
properties in the Property Inspectors. You can avoid much scripting by just

 40

setting the object properties manually through the Property Inspectors (discussed
in Section 3).

Professional scriptors often try to write script in the briefest terms with a minimal
number of lines of code. Sometimes, though, it is better to write a longer script for
clarity, especially if other people are going to read your script.

The Comment Sign

It is frequently desirable to make notations in the script to remind you and others
about what your script is trying to accomplish at various points. Scripts can get so
complex as to give even their original creator a problem in remembering the
reason for what he/she did.

In order to make such comments within the script editor, it is important that
LiveCode does not attempt to interpret your notes as an actual script. Thus,
wherever there is a double-dashed notation:

--

LiveCode knows that anything that follows that notation on that line should be
ignored and is not a script. For example:

on mouseUp
beep -- The beep is a simple message than can be used in testing scripts.
end mouseUp

In the above script, LiveCode ignores the comment “The beep is a simple
message than can be used in testing scripts,” since it follows the double dash. A
pound sign (#), or // is also acceptable to signify a forthcoming comment on that
line.

If you want to apply a comment to a very long segment of text (or block a long
segment of script), this can also be done by placing /* at the beginning and */ at
the end of the text sequence:

/***
This script was borrowed with permission from the Acme Script Writing
Company, www. acmescript.com.
Is was modified slightly on June 12, 2008
***/
The comment sign can be used to deactivate a number of script lines at once:

on mouseUp
 --< do A>
 <do B>

 41

 --<do C>
end mouseUp

In the above script, the only thing that will be carried out is “B”.

The comment sign can also inactivate an entire handler, simply by putting the
double dash right before the first line of the handler. For instance:

-- on mouseUp
 <do something>
end mouseUp

The above script as a whole is inactive, because the dashes were placed before
on mouseUp. There is then no need to place dashes before the other lines in the
script.

Scripting pearl: Sometimes, when reading someone else’s button script, you
come across an unfamiliar word and you don’t know whether or not this is an
actual LiveCode dictionary word or one made up by the programmer that refers
to a handler the developer created somewhere else in a card or stack script. By
right-clicking on the word, LiveCode will take you directly to the dictionary if it is a
legitimate LiveCode word, or directly to the developer’s handler if it is a word
made up by the developer. It is also useful to name the word something that
immediately lets the user know that it is made-up, e.g. MyVariable.

The terms on and command are synonymous, but some people prefer to use
command instead of on as a reminder that the word that follows is their own
made-up word and not an established LiveCode word

 CHAPTER 7. MOUSE-RELATED WORDS

We begin with mouse handlers, since they will be used in scripting examples
described below.

on mouseUp
on mouseDown
on mouseEnter
on mouseLeave
on mouseRelease
on mouseMove
on mousestillDown

 42

Note that it is conventional to capitalize the “U” in mouseUp and the “D” in
mouseDown, etc., for easier reading. However, LiveCode is generally case-
insensitive and it make little difference whether you capitalize letters (Speech
command voice names are an exception – see Chapter 20).

Note also that a string (a sequence of characters or words, e.g., the words, “The
mouse has just been pressed”), as in the script:

On mouseUp
 put “The mouse has just been pressed” into Message Box
End mouseUp

has to be in quotes in the script or LiveCode won’t understand. Actually, if there
were only one word in the quoted text, quotes are usually not needed, but it is
good practice when referring to a text string, regardless of whether it is one word
or more, to place in quotes any object name (e.g., the name of a stack, card, or
control). This will help distinguish such words from LiveCode dictionary words
and variables (discussed in Chapter 11), which are never in quotes.

It is not necessary to use the Script Editor to practice many of the commands in
this book. You can write script in the Message Box. For instance, instead of a
handler within a button that reads:

on mouseUp
 beep
end mouseUp

you could just type beep in the Message Box (Tools/Message Box) and press
Return or Enter.

Also, instead of using the mouse to directly click on a button, it is possible to
direct LiveCode, through scripting, to click on a button or other object. For
instance, you could type in the Message Box:

click at the loc of button “MyButton”

or
send “mouseUp” to button “MyButton”

or
dispatch “mouseUp” to btn “MyButton”

all of which activate the mouseUp script of the button.

In the Message Box, pressing the up or down keyboard arrow scrolls through
past scripts that were entered in the Message Box, so you don’t have to retype
them. This can help when you want to retry a script a number of times.

Other mouse-related words:

 43

the mouseH
the mouseV
the mouseLoc

The mouseH -- the horizontal distance of the cursor’s hot spot from the left side
of the card.
the mouseV -- the vertical distance of the cursor’s hot spot from the top side of
the card.

If the mouseH is 100, for example, and the mouseV is 150, then the (cursor) is at
coordinate position (100,150), which is the mouseLoc, namely (mouseH,
mouseV).

the mouse

Just saying the mouse tells LiveCode to let you know the state of the mouse,
whether up or down.

the mouseClick

The mouseClick tells you whether or not the mouse has been clicked (the
mouseClick is true)

Examples:

on mouseUp
 wait until the mouseClick -- i.e., don’t do anything until the mouse has been
clicked.
 beep
end mouseUp

In the above script, you can wait as long as you want, but the beep won’t come
until you click the mouse somewhere on the card.

CHAPTER 8. NAVIGATION COMMANDS

go

The go command tells LiveCode to go somewhere.

Go next means to go to the next card in the stack.

Examples of equivalent scripts:

 44

go to the next card of this stack
go to the next card
go to next card
go next card
go next cd
go next

LiveCode assumes all of the above scripts mean “go to the next card of this
stack”. Thus, if you are on card 2 of a 5-card stack, go next will take you to card
3.

Note that the script word the is optional here and used just to make the script
more English-like. You can also eliminate the word to for navigation. Card can be
abbreviated cd.

Other examples:

go previous (or go prev) – takes you to the previous card in the stack. If you are
on card 2, this command will take you to card 1.

go to card 5 of this stack – You can identify a card by its number, in this case
card number 5 in the stack.

go to card “menu” – a card can be identified not only by number but by its name.

go to card id 1006 – A card can also be identified by its unique ID number.

go to stack “MySubstack” -- You can navigate between stacks.

go to card 3 of stack “MySubstack” – You can navigate to a specific card in
another stack.

In general, when navigating to a card, it is better to identify it by name, rather
than by card number or ID number, because identifying the card by name helps
you to clearly identify the card when you review a script. Also, if you refer to a
card by its number and then add or subtract cards from a stack, or change their
order, the number of that card may change and be inappropriately referred to in
the script.

Go back – takes you back to the card you were just on. So if you had jumped
from card 1 to card 5 and then issued the command go back, this will take you
back to card 1 (rather than card 4, which would be the go prev command).

Navigation is such an important activity in editing that it is very helpful to
remember its keyboard equivalents:

 45

• Command-1 (Mac) or Control-1 (Win) goes to the first card
• Command-2 (Mac) or Control-2 (Win) goes to the previous card
• Command-3 (Mac) or Control-3 (Win) goes to the next card
• Command-4 (Mac) or Control-4 (Win) goes to the last card

push card/pop card

Say you have a script that brings you to another card, which in turn connects you
to another and another, etc., and after the user visits all those cards, you want to
return to the original card. Issue the command push card before leaving the
original card. This flags that card as the card of interest to return to. On the last
card visited, you would write pop card in the script of a Return button. This tells
LiveCode to return to the original card that was “pushed”.

For example, a button on a card titled “Invoices” might contain the script:

on mouseUp
 push card
 go to card “Authors”
end mouseUp

On card “Authors” you might have a button whose script is:

On mouseUp
 go to card “Royalties”
end mouseUp

on card “Royalties” you might have a button whose script is:

on mouseUp
 pop card
end mouseUp

The pop card is all you need to get back to the original card, “Invoices”, which
issued the push card command.

CHAPTER 9. GENERAL ACTION COMMANDS

put

Put is the command to put something into a “container”. For instance:

put “chocolate” into Message Box
put “chocolate” into message
put “chocolate” into msg
put “chocolate”

 46

All of the above do the same thing, namely put the word “chocolate” into the
Message Box. Since the put command is so common, LiveCode accepts the
abbreviated forms as well, including just put “chocolate” for putting words into the
Message Box.

put “chocolate” into field “mouth” – puts the word “chocolate” into a field titled
“mouth”.
put field “mouth” – puts the text of field “mouse” into the Message Box. You could
also have written:

put the text of field “mouth”

The above scripts show how flexible LiveCode is in providing a user-friendly
English-like scripting environment.

The containers that are the recipients of the put commands do not have to be
fields or the Message Box. A container can also be a variable, e.g.

put “chocolate” into gMyMouth – a made-up variable word
put gMyMouth into msg

We will discuss variables more fully in Chapter 11.

The act of “putting” is not confined to text. One can also use images:

put image 1 into image 2 – This substitutes one image for another.

Bonus script pearl:
put the name of this card – returns the card’s name in the Message Box
put the name of this stack – returns the stack’s name in the Message Box
put the name of this button – returns an error message; the word this is used
only in relation to a stack or a card, not other objects. For a button you might
instead write put the name of me. For instance, if the button’s name is “Menu”
and the handler in the button reads:

on mouseUp
 put the name of me
end mouseUp

then, on clicking on the button, the Message Box will read button “menu”, the
long form of the button’s name, with quotes. If, instead, the script line were put
the short name of me, the Message Box would just read menu, without quotes.

set/ get

 47

Script words can be used to set the properties of any Inspector. You can find
these script words using the tooltip positioned over the words within each
Property Inspector. If you want to change a particular property, such as the color
of a card, you could just click on the card’s background color box and choose a
color manually. Or, you could do it in a script. E.g.,

set the backgroundColor of this card to “red”

The set command, then, is very useful for setting the properties of objects.

The get command gets some particular information and doesn’t do anything with
it except store it temporarily in an invisible container called it. (It is a type of
variable, but then again, we haven’t discussed variables as yet.) One can then do
something with the it. For example, say there is a field titled “food” and the field
contains the word “chocolate”. Then, if one writes the script:

get the text of field “food”
put it into msg

the first of the above two lines will get the text “chocolate” from the field titled
“food” and put the word “chocolate” into the container called it. The second line
puts the contents of it into the Message Box.

This is the same as saying:

put the text of field “food” into it
put it into msg

More briefly, one could just write: put field “food” into msg, or just put field “food”.
Just different ways of expressing the same thing.

hide/show

You can hide or show stacks, or controls placed on a card. E.g.,

hide this stack
show this stack
hide button “start”
show btn “start”
show fld “info”
show image “rainbow”
hide me – hides whatever object you clicked on
hide menubar – hides the LiveCode menu bar (at the top of the screen)

Note the following common optional abbreviations:

 48

button -- btn
field -- fld
card – cd
cr-- carriage return, which is the same as return

send

The word send (alternatively, dispatch) is used to send a message that triggers a
handler in a different object. For instance, suppose there is a button titled
“MyName” which contains the script:

on mouseUp
 beep
end mouse

and there is another button titled “Transmitter” that has the script:

on mouseUp
 send “mouseUp” to btn “MyName”-- or dispatch” mouseUp” to btn “MyName”
end mouseUp

If you click on button “Transmitter” it will send a mouseUp message to button
“MyName” and there will be a beep.

quit

Simply writing quit suffices to close the entire stack file (or standalone, after the
standalone has been created). For example:

on mouseUp
 quit
end mouseUp

Simple? Yes!

answer vs ask

The answer command takes the form:

answer <question> with <reply1> or <reply2> or <reply3> or <reply4> -- Up to 7
replies are allowed. For instance:

answer “What color are your eyes?” with “Brown” or “Blue” or “Green” or “Cancel”

Try writing the above in the Message Box. On pressing Return, an answer dialog
appears with those choices (Fig. 9-1).

 49

Fig. 9-1. Answer box.

Whatever choice you make, whether “Brown”, Blue”, “Green”, or “Cancel”, those
words go into the variable container called it, in which case the script can act on
that choice. For instance,

on mouseUp
 answer “What color are your eyes?” with “Brown” or “Blue” or “Green” or
“Cancel”
 if it is “Cancel” then exit mouseUp -- the handler stops and nothing is done
 put it -- puts it into the Message Box if you made a choice of eye color
end mouseUp

Note that it is necessary to add the line

if it is “Cancel” then exit mouseUp

because clicking on “Cancel” places the word “Cancel” into it, just as clicking on
“Brown”, “Blue”, or “Green” would place those words into it, and without that line
about exiting, the word “Cancel” would be placed into the Message Box. You
didn’t have to use the word “Cancel”. You could have used any other word or
group of words, such as “None of your business”.

The ask command differs from the answer command in that its dialog box
contains a field in which the user types a response (Fig. 9-2). For instance, put
the following script in a button:

Fig. 9-2. Ask box.

 50

on mouseUp
 ask “What color are your eyes?”
 if it is empty then exit mouseUp -- Nothing happens if the dialog text box is
empty, i.e. the user did not type any text.
 put it -- puts what the user typed into the Message Box. Or, you can do
something else with it that is more interesting.
end mouseUp

By default, there are just an “OK” button and a “Cancel” button in ask dialog
boxes. When you click on these, the words “OK” or “Cancel” are not placed into
it, as would be the case for the answer dialog. Rather, the contents of the ask
dialog box text field are placed into it once “OK” is clicked. If “Cancel” is clicked,
ask dialogs, unlike answer dialogs, interpret this as stopping and exiting the
script right there.

The ask command dialog box field doesn’t have to be empty. You can indicate a
default text for the field:

on mouseUp
 ask “How many beers would you like to order?” with “1”
 if it is empty then exit mouseUp -- Nothing will happen if the dialog text box is
empty.
 put it -- puts “1” into the Message Box.
end mouseUp

In the latter script, the user can order just the 1 beer without having to type in
anything, or type in how many to order.

A modification of ask is ask password, as in:

ask password “What is your security code?”

The above script brings up a dialog box in which the user’s typing appears in
asterisks (*****) for privacy, and can be used as a password. See the LiveCode
dictionary for variations on this.

The ask and answer dialog boxes can contain icons symbolizing “Error”,
“Warning”, “Information” or “Question” (Fig. 9-3), as in the modified script lines:

answer question “What color are your eyes?” with “Brown” or “Blue” or “Green” or
“Cancel”
ask question “What color are your eyes?”

 51

Fig. 9-3. Ask and Answer icons.

sort

Sort can be used to sort cards or lines in a container, such as a field.
For example, imagine you have a stack of cards with a background field titled
“Name” at the top of each card. Each card corresponds to a different name. You
want to sort the cards in alphabetical order. This is accomplished in the script:

sort cards ascending by field “Name” – sorts in ascending alphabetical order,

or more simply:

sort cards by field “name” – if you don’t specify ascending or descending.
LiveCode assumes ascending.

If you wanted to sort the cards in reverse alphabetical order, you can write:

sort cards descending by field “Name”

or numerically:

sort cards numeric by field “zip code” -- sorts ascending numeric by default
sort cards ascending numeric by field “zip code”
sort cards descending numeric by field “zip code”

sort field “MyList” -- sorts the lines in field “MyList” in ascending alphabetical
order

 52

wait

In writing several lines of script within a handler, each line represents a different
task for LiveCode to carry out as fast as it can. If you want a time delay at some
point in the handler, you can use the wait command:

on mouseUp
 put “Listen to this sound” into field “Listen”
 wait 3 seconds
 beep
end mouseUp

The beep will occur after a 3-second delay. You can also portray small time
intervals as ticks. A tick is 1/60 of a second. A millisecond is 1/1000 of a second.
E.g.,

wait 10 ticks or just wait 10

A difficulty with the wait command is that no other script will run while the waiting
occurs. For instance, suppose you wish there to be a 5-second delay after a user
clicks on a button before the command myCommand is executed. You could then
have in the script of the button:

wait 5 seconds
myCommand

However, using this construction means that clicking on any other buttons in that
5 second interval will have no effect until those five seconds are up.

A way around the problem is to use the wait … with messages format. E.g., in
the button script:

on mouseUp
 wait 5 seconds with messages
 mCommand
end mouseUp

The user can then effectively click on other buttons, or perform other actions in
the 5 second interval.

edit script

Edit script opens up the Script Editor of a stack, card, or object on a card.
Examples:

 53

Edit the script of this card
Edit script of this stack
Edit script of btn 1
Edit script of btn 1 of next card

Edit script can be very useful, for instance, if you accidentally created a button
“MyButton” with just an on mouseEnter handler. For instance:

on mouseEnter
 answer “Why did you do that?”
end mouseEnter

You will then find it difficult to alter the script of button “MyButton” because every
time you place the cursor over the button (whether in Run or even in Edit mode),
you will frustratingly get that “Why did you do that?” answer box. A way to get
into the button script is to type in the Message Box:

Edit script of btn “My Button”

This will open the button’s script editor, where you can make changes with no
difficulty.

move/stop moving

The move command moves a stack or control by scripting. Examples:

move this stack from 0,0 to the screenloc – this gradually moves the center of the
stack from the upper left portion of the computer screen to the center of the
screen.

move btn 1 from “ 0,0” to “100,125” in 5 seconds – gradually moves button 1 from
the 0,0 location on the card (the card’s upper left corner) to 100,125 on the card
over a 5-second period.

Setting the moveSpeed sets the speed of the move:

set the moveSpeed to 10
move btn 1 from 0,0 to 100,125

stop moving btn 1 – stops the movement of the button before the above
movement is completed.

You can move a control along a curved path as well. For instance, create a path
using the Freehand Graphic tool. A graphic object can then move along the
path:

 54

 move image 1 to the points of graphic 1 in 1 second

beep

The beep sound can be useful as an alarm to alert the user to a significant event.
It can also be used during development by temporarily placing the beep
command at certain points in a script to see if the script is functioning up to that
point. (Another useful word to temporarily put into a script to see if it is
functioning up to that point is put, as in put “hi”. If the script is working up to that
point, the Message Box should show the word “hi”.

CHAPTER 10. KEYBOARD WORDS

 “Keyboard Words” refers to specific keys on the keyboard. Examples:

if the controlKey is down then <perform some action>
if the commandKey is down then <perform some action>
if the optionKey is down then <perform some action>
if the shiftKey is down then <perform some action>

on keyDown pKey is a handler for any particular key that might be pressed. Try
putting this into the script editor of a field and then typing within the field any
letter or number:

on keyDown MyKey
 put MyKey
end keyDown

The Message Box will show each letter or number you type in the field. In the
above script, on keyDown means “When you press a key down”. The word
MyKey is a container to hold the identity of the particular key you pressed and
could be any made-up word. This particular handler puts the name of the letter or
number you type into the Message Box. You could do more important things with
on keyDown MyKey:

on keyDown MyKey
 if MyKey is not a number then answer “You must enter a number”
 else pass keyDown
end keyDown

The above script uses the conditional if-else format, which is discussed in
Chapter 16. Briefly, though, the idea is that here you want a field that accepts
only numbers, not letters. If the user mistakenly types a letter, the message “You
must enter a number” appears, instead of the letter being typed in the field. If it is
a number, the else pass keyDown part of the script “passes” the number along to
the field, where the number then appears.

 55

The toUpper and toLower words are functions that direct LiveCode to convert
any typed letters to upper or lower case. Try this in a field script:

on keyDown MyKey
 put toUpper (MyKey) into the selection
end keyDown

This script converts any typed letters into upper case. The reason it works is:
When you select text within a field, the selected text is called the selection, which
is also a type of container. You can put things into a container, so if you put text
into a selection, it replaces what was selected. If the user clicks in a field but
doesn’t select any words and there is only an insertion point, this is still a
selection, but one than consists of 0 characters. If you put text into that
barebones selection, the result is text added at that insertion point. In the above
keyDown script, there is an insertion point in the field just before you type
anything. When you put toUpper (MyKey) into the selection, you are inserting the
upper case form of the letter you are typing at the insertion point. This type of
scripting is further clarified in the Chapter 13, which discusses Functions.

The keyboard contains 4 arrow keys: up, down, left, and right. Scripting to direct
what happens when an arrow key is pressed has the following format:

on arrowKey MyKey
 if MyKey is “right” then beep
 if MyKey is “left” then <do something else>
 if MyKey is “up” then < do another thing>
 if MyKey is “down” then < do yet another thing>
end arrowKey

CHAPTER 11. VARIABLES AND CUSTOM

PROPERTIES

It
Temporary Variables
Local Variables
Global Variables
Custom Properties

Variables are extremely valuable unseen storage containers into which one can
“put” something, particularly words and/or numbers. The purpose of using a
variable is to have the script remember some information for future reference.
How long the variable remembers its contents depends on the type of variable.

